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INTRODUCTION

NTIL a few years ago it had been impossible to construct a theory of

radiation which could account satisfactorily both for interference phe-
nomena and the phenomena of emission and absorption of light by matter.
The first set of phenomena was interpreted by the wave theory, and the sec-
ond set by the theory of light quanta. It was not until in 1927 that Dirac
succeeded in constructing a quantum theory of radiation which could explain
in an unified way both types of phenomena. In this article we shall develop
the general formulas of Dirac’s theory, and show its applications to several
characteristic examples (Part I). In the second part of this work Dirac’s rela-
tivistic wave equation of the electron will be discussed in relation to the
theory of radiation. The third part will be devoted to the problems of the
general quantum electrodynamics, and to the difficulties connected with it.

* Lectures delivered at the Symposium for Theoretical Physics during the Summer Session
of 1930 at the University of Michigan.
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Part I. Dirac’s THEORY OF RADIATION

§1. Fundamental concept

Dirac’s theory of radiation is based on a very simple idea; instead of con-
sidering an atom and the radiation field with which it interacts as two distinct
systems, he treats them as a single system whose energy is the sum of three
terms: one representing the energy of the atom, a second representing the
electromagnetic energy of the radiation field, and a small term representing
the coupling energy of the atom and the radiation field.

If we neglect this last term, the atom and the field could not affect each
other in any way; that is, no radiation energy could be either emitted or ab-
sorbed by the atom. A very simple example will explain these relations. Let
us consider a pendulum which corresponds to the atom, and an oscillating
string in the neighborhood of the pendulum which represents the radiation
field. If there is no connection between the pendulum and the string, the two
systems vibrate quite independently of each other; the energy is in this case
simply the sum of the energy of the pendulum and the energy of the string
with no interaction term. To obtain a mechanical representation of this term,
let us tie the mass M of the pendulum to a point A of the string by means of
a very thin and elastic thread a. The effect of this thread is to perturb slightly
the motion of the string and of the pendulum. Let us suppose for instance
that at the time ¢=0, the string is in vibration and the pendulum is at rest.
Through the elastic thread ¢ the oscillating string transmits to the pendulum
very slight forces having the same periods as the vibrations of the string. If
these periods are different from the period of the pendulum, the amplitude of
its vibrations remains always exceedingly small; but if a period of the string
is equal to the period of the pendulum, there is resonance and the amplitude
of vibration of the pendulum becomes considerable after a certain time. This
process corresponds to the absorption of radiation by the atom.

If we suppose, on the contrary, that at the time {=0 the pendulum is
oscillating and the string is at rest, the inverse phenomenon occurs. The forces
transmitted through the elastic thread from the pendulum to the string put
the string in vibration; but only the harmonics of the string, whose fre-
quencies are very near the frequency of the pendulum reach a considerable
amplitude. This process corresponds to the emission of radiation by the atom.

§2. Analytic representation

Returning to the case of the atom and the radiation field, the first problem
which we have to solve is the finding of a convenient set of coordinates to rep-
resent the system. The position of the atom may be described by means of any
system of general coordinates; if we assume that the atom contains only one
electron, we may choose, for instance, its Cartesian coordinates (and eventu-
ally also the spin coordinate). The state of the radiation field could be deter-
mined by the values of the components of the electric and the magnetic vec-
tors at any point of the space. We could also represent the field by means of a
scalar and a vector potential. In this case we must give at any point of space
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the values of the scalar potential ¥V and of the three components U, U, U, of
the vector potential. In this representation the field is described by a con-
tinuous infinity of variables, which is very difficult to handle; furthermore
such representation is inconvenient because the energy of the field expressed
in terms of the variables, contains them in a very mixed form, even if we neg-
lect, in a first approximation, the action of the atom on the field.

For these reasons it is often more convenient to represent the field in the
following way. Instead of considering the radiation in infinite space, let us
consider the radiation enclosed in a cavity of finite volume Q with perfectly
reflecting walls. If afterwards we let the cavity become infinite in every direc-
tion, we shall get as a limit the properties of radiation in free space.

The electromagnetic vibrations in a cavity of finite volume, just as the
vibrations of an elastic body of finite volume, may be represented by the su-
perposition of a discreet infinity of fundamental vibrations each one corre-
sponding to a system of standing waves. The number of standing vibrations
whose frequency lies between » and v+-dv is given, for a very large volume £,
by:

8w
dN = — Wiy (1)
3

¢ being the velocity of light.

It is to be noticed that a radiation field only and not a general electromag-
netic field may be represented through a superposition of standing vibrations.
The general quantum electrodynamics deals with the quantum theoretical
representation of a general electromagnetic field ; we shall discuss this theory
in Part III of this article. At present we shall limit ourselves to the simple
radiation theory, that is, we shall consider quantum theoretically only that
part of the electromagnetic field which is responsible for the phenomena of
radiation. The radiation field may be then represented as a superposition of
ordinary plane electromagnetic waves; whereas for mstance the Coulomb
forces need a more general representation.

The electromagnetic field of a plane standing wave has a vector poten-
tial of the form:

U = Au(}) sin (3701 (o, X) + /3). (2)

The sine factor gives us the amplitude dependence on position; X is a vector
with components x, v, 2; a is a unit vector giving the direction of the standing
wave; A is a unit vector giving the direction of vibration of the electric force;
since the wave is transversal, 4 and « are at right angles. The factor u(¢)
which gives the dependence on the time, is generally a sine function of ¢.
However, this is not always the case; if there is an atom which either emits or
absorbs radiation, the amplitude of the standing vibration may increase or de-
crease. )

Now we represent the radiation field as the superposition of standing
waves of the type (2), with frequencies vy, vz, - -+, v,. The number of fre-
quencies lying between v and »+dv is given by (1). The directions «, and 4,
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of the standing waves and of polarization are distributed at random. We have
also:

U= > Aut)sinl, = YU, 3)
where:

2wy

s =

- (o) X) + Bs. (4)
If there is neither emission nor absorption of radiation, the #,(¢) are sine func-
tions of the time; but in the general case, they may depend on ¢ in any way.
Now it is evident that if we know, at a given time ¢ the values of all the %, the
vector potential throughout the space Q is determined for that instant since
this is given by (3). We may therefore take the «, as coordinates representing
the radiation field at any moment.

§3. Electromagnetic energy of radiation field

We have now to express the electromagnetic energy of the radiation field
in terms of the coordinates #,. The electric and magnetic forces, derived from
the potential U, are:

1 U
E=—— —; H=rotU.
¢ 0t
From these equations we get, using (3) and (4)
1
E=—> —Aa,sinT,
s ¢

©)

2y

H= 3

8

[s, As)tts cos T
The electromagnetic energy contained in the space Qis:
Ee + H?
@
8w

W=

where the barred expressions represent mean values. We must calculate the
space average of E? and H2. It is evident that the mixed terms in the squares
have the average zero. Remembering thatsin’T, = cosT, =% and [a,, 4,]2=1,
since 4, and «, are perpendicular unit vectors, we find

_ 1 _ 272 o2
E? = — Zusz; Hs = Z T Us®.
2¢ 7 s
Thus the electromagnetic energy is
Q
W, = Z(%’dsz + 27%,2u,%). (6)
8wrct .

From this expression of the radiation energy we may easily obtain the equa-
tions which give the dependence of #, on the time in Hamiltonian form. We in-
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troduce for this purpose a new variable v, canonically conjugated to u,, by
means of the usual rules
oW, Q
v = = Us.

o, 8mrc?

The energy (6) becomes in the Hamiltonian form

W= T (2 2+ Zam) ¢
. = — AT R
“\e 2 8
From this Hamiltonian we get the canonical equations
oW, 8mrc? . oW, Q
U= = 7} Py = — = — 47%,2u,. (8)
07, Q o, 8mc?

If we eliminate v, from these equations, we get
iy + 47224, = 0. ’ 9)

We find, as was to be expected, that #, is a periodic function of the time with
the frequency »,. We may also say that the canonical Egs. (8) are equivalent
to the Maxwell equations for the vacuum. It is convenient to avoid compli-
cated factors in the Hamilton function (7) changing by constant factors the
canonical variables #, and v, into two other conjugate variables ¢, and p,

given by
8rc2\1/2 Q \1/2
Us = sy Vs =\ — s 10
< Q ) 7 (871’62> ? (10)

The energy (7) takes now the form:

W, = Z(%Psz + 27%,%q,%) (11)

which is the same as the Hamiltonian of a system of many independent oscil-
lators with mass 1 and frequencies vy, »s, - - -, »,. The vector potential (3) in
terms of the new variables ¢,, takes the form:

8m\ /2
U=c¢ (—Q_> > A,q.sin T,. (12)

§4. Hamiltonian of the atom and the radiation field

We now must write the Hamiltonian for the atom which, added to (11),
shall give us the Hamiltonian of the complex system of the atom and the radi-
ation field.

The Hamiltonian function for an electron may be obtained to a first ap-
proximation from the ordinary relativistic Hamilton function for a point
charge, that is:

i Wae — eV\? eU\? mc?
0=-————{(mc+ ——3—(1?——*) }-l——— (13)
2m c c 2
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by neglecting the terms in 1/c%. We shall see later (Part II) how it is possible
-to use also Dirac’s relativistic Hamiltonian of the spinning electron in the
radiation theory.
If we neglect the terms in 1/¢? we get from (13)
p* e
Wo=-——+eV ——(U, p). (14)
2m me
The Hamiltonian of the complex system of the atom and the radiation
field is obtained adding (11) to (14) and putting in (14) the expression (12)
instead of U. We obtain in this way:

1
H=——p+el+ 2 (Gp + 2707,
m 8
(15)

e /8m\1/2
-2(3) T, psinr.
m \ Q s

The first and second term of (15) give us the Hamiltonian which describes the
motion of the electron if we neglect the effect of the radiation on it. The third
term is the Hamiltonian (11) of the radiation field. The last term

8\ 1/2
g = — i(_lr) > (A,, p)gssin T, (16)
m \ Q

8

is the coupling term, since it contains both the coordinates of the radiation
(¢s) and of the atom (p and x, contained in T',).

In some cases, particularly for the theory of dispersion and of the Comp-
ton effect, it is necessary to write the Hamiltonian with a little closer approxi-
mation. In developing the term (1/2m)(p—eU/c)? of (13), we have neglected

U 2mc?. (17)

If we keep this term, and introduce for U the expression (12), we must add to
the Hamiltonian (15) the term

4e?

H® = — > (A4, A,)qsgo sin Ty sin T, (18)
m so

We shall see later the very peculiar connection of this term with the jumps
from positive to negative mass which characterise Dirac’s theory of the spin-
ning electron.

§5. Classical treatment

It is important to notice, that the results of the classical theory of emisson
of electromagnetic radiation and particularly Larmor’s formula can be derived
in a classical way from the Hamiltonian (15). This may be seen if we derive
from (15) the canonical equations; for instance, if we consider the pair of
variables ¢., p, we get the equations:
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éc = ﬁ = Ps; ’23 = - on = — 47I'2V.2q3 ‘I‘ ‘E‘ ('8—T>1/2 Z(AS? P) sin Fs.
dps dg, m \Q s
If we eliminate p,, we find for g,:
e [8m\!/2
oo+ At g, = ;(5> Sy ) sin .. (19)

This is the equation for the forced vibrations of an oscillator of frequency v,.
If we suppose for instance that at the time {=0 there is no radiation in the
field, i.e., that g,=p,=0; but that there is an electron moving with non uni-
form motion, so that its momentum p varies, we see from (19) that after a
certain time ¢, shall be different from zero; this means that there is a certain
amount of energy in the s component of the radiation which has been emitted
by the moving charge. The effect is of course bigger, if the motion of the
charge is periodic with a period near to »,. It might actually be shown by
this method that the amount of energy emitted per unit time by the moving
charge is given, to a first approximation, by:

—_——— 2
P A (20)
where 4 is the acceleration of the particle, in accordance with Larmor’s re-
sult.
This shows us, that the classical treatment of (15) gives us the same results
as the ordinary theory of radiation; we must now apply to (15) the quantum
mechanical methods.

§6. Perturbation theory

For this we write down some general formulas of the perturbation theory
of wave mechanics which we shall use later. Let

H=H,+ % (21)

be the Hamiltionian of a system with coordinates ¢ and moments p. The
Schrédinger equation is:

—— —Z = Hy = (Hy+ %)Y (22)

where H is an operator obtained from H with the substitution of (k/2wz)
(8/9¢q) in place of p.

We consider now the unperturbed problem corresponding to the Hamil-
tonian H,. The Schrédinger equation corresponding to it is:

h 0¥
- — — = Hy¥. (23)
2w1 0t
Let
¢1’¢2y"')¢n"'

be the normalized eigenfunctions of the unperturbed problem and
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Ei Ey -+, Ey---
be the corresponding eigenvalues. The most general solution of (23) is then:
V= Taupu(g)etrisnis (24)

where the a, are constants. The physical meaning of the a, is contained in

the statement that ,
| an|? (25)

is proportional to the probability of finding the system in the nth quantum
state. We may also normalize the a, in such a way that

;Ia,.|2=1.

Then ]a,, |2 gives us directly the probability that the system is in the nth
quantum state; @, is called the amplitude of probability for the nth quantum
state. The solution ¥ of the perturbed problem (22) can be developed in a
series of eigenfunctions of the unperturbed problem; it can therefore be writ-
ten in the form (24); only the a’s are no longer constants, but are functions of
the time ¢ Substituting (24) in (22), we find for the a’s the differential equa-

tions:

2w
i, = — —~ 3 Bnmme?™E En—Em)t/h (26)

m
where:

is the element #,m of the perturbation matrix, representing the perturbation
energy 3C;é, is the conjugate complex to ¢,. From (25) we see that the a’s vary
with time, so that also the probability of the different quantum states, which
is given by (25) changes with time. This means that the effect of the pertur-
bation is to induce transition probabilities among the quantum states of the
unperturbed system.

§7. Quantum mechanical treatment

We must now apply these methods to the Hamiltonian (15) of an atom
and the radiation field. As the unperturbed Hamiltonian, we take:

1
Ho=——p*+ oV + 2002 + 2'02.). (28)
m s

The interaction energy (16) is considered as the perturbation energy.
The Hamiltonian H of the unperturbed system is the sum of the terms

1 .
T Pt eV (29)

representing the energy of the atom, and terms like:
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%P82 + 27"21’.‘12%12 (30)

representing the energy of the sth component of the radiation which is iden-

tical with the energy of an oscillator of the same frequency v,.
Let

Uny Unyy Ungy * 5 Unyy * °

be the Schrédinger functions for the atom (with Hamiltonian (29)) and for
each component of radiation (with Hamiltonian (30)). For simplicity of writ-
ing we distinguish all these functions only by the index. The Schrédinger
function corresponding to the unperturbed Hamiltonian H, is then given by
the product

Prny ng,evvim oo = Unll My = = Uy, >+ (31)

The corresponding eigenvalue is the sum:
En,nl,ng,-“,n,,., = En+En1+ v '+Eﬂ.+ . (32)

Since the Hamiltonians (30) are of the oscillator type we have, as for the oscil-

lator
E,, = hvs(n, + 3).

We may also neglect the constant energy hv,/2, which does not affect the
phenomena, since the frequencies », are constant, and only differences of
energy are considered, and write simply

E,, = hvn,. (33)

Formula (32) now takes the form

Epmgreoomyers = En 4 hoing + hvgng + « - -, (34)
The general form of the field scalar, corresponding to (24) is then:
VX, 0,05 50 )

D Gang ey Unlhng -+ - Up, - - - e 2T Bt hangt Ot (35)

8

The physical meaning of the a’s, according to (25), is the following:
| G ny ngecomge- | 2

is the probability that the atom is in the quantum state »; the first component
of radiation in the state n;; the second in the state #,. If we have for instance
as300...0... =1 and all the other a’s are =0, we may say that it is certain that the
atom is in the third quantum state, and no component of radiation is excited.

If we neglect the effect of the perturbation term 3¢, the a’s are constant;
the effect of the interaction term 3C is, according to the general formula (26),
that the a’s vary with the time. If we have, for instance, at the time =0,
@300...0... = 1 and all the other a's equal to zero, after a certain time ¢, some of
the a’s which were =0, say @s,1,0...0... may have a value different from zero.
There is therefore a finite probability of finding that, at the time ¢ the atom
is in the state 2, having jumped down from state 3 to state 2 and that the
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first component of the radiation is excited. This is the quantum theoretical
mechanism of the radiation of energy.

We have now to write for our case the equations corresponding to (26) to
find how the a’s vary with time. For this we must find the expression of the
matrix element of the perturbation 3¢, corresponding to a transition of the
whole system from a quantum state #,%1,%, - - - to another m,m,m, - - . This
is given, according to (27) (31), since the #’s are real, by:

By - -nge i

Gimmyeeemge .-
= ff... f...ununl...unn... :}c“muml...um'...dqul...dq‘... (37)

where we must put for 3¢ the operator (16).
The integral (37) may be very easily calculated taking into account the
following relations

funaumadqa = 6nama (38)
which expresses the orthogonality of the #'s;
0 if m, #n, + 1
h(n, + 1)71/2
f Gethn tim I = [—(——)] i my = my 4 1 (39)
812y,

hn, V2
[8 . :I if mg=m, — 1.
T2y,

These equations may be easily verified, since the %, are the well known eigen-
functions of a harmonic oscillator with mass 1 and frequency »,; (39) are the
elements of the matrix representing the coordinate g, for this oscillator. We
must remember further that the operator p, with components p.,p,,p., means
(h/2w) grad; we put then

Pom = f Uy sin Typundxdydsz
(40)
= (h/2mi) f sin Ty, grad #.dxdydz.

We find now easily that the matrix element (37) is always=0 if more than

one of the indices myms, - - -, m, - - - of the radiation components is differ-
ent from the corresponding #ni#s, - - -, %, - + + . If only one of the mym,, - - -,
M, -+ +, SAY M,, differs from the corresponding #, the result, according to
(39) is different from zero only if m,=n,4 1. In this case we have:
1/2 1/2
gcrml"-ns~-~;mn1~"n,il~~- = - —e—( h ) (An Pmm)[(ns—'- 1) ] (41)
m \ 7w, ngll2

where we must use the upper expression (#,+1)V2 if m,=n,+1 and the lower
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n,l? if m,=n,—1. Very important is the particular case that the dimens-
ions of the atom are very small compared with the wave-length, so that the
T',, i.e., the phases of the radiation components may be considered as con-
stants over all the space where the eigenfunctions of the electron are practi-
cally different from zero. In this case we may take sin I', out of the integral
in (40) and we get:

h

Pym = —sinT, f U, grad undxdyds.

i

Remembering that:

— | #.grad undr
2w

represents the momentum of the electron, it can be immediately proved that:

h
—_ fu,, grad ude = - ZWimeanm (42)

271

where:
Vmn = (Em - En)/h . (43)

is the frequency corresponding to the jump from state m to state #;
X = Xom = f Xttttndr (44)

is the element m#n of the matrix representing the radius vector X (observe
that the letter m is used in (42) both as index and as the mass of the electron;
but since no confusion is possible we prefer not to introduce a new symbol).

We obtain now:
Pom = — 270imVpmnXnm sin Ty (45)

(41) becomes then:
) ENY2 v (n, + 1)1/2 )
oy omge--imng--omgtle- = 2mie - (AXm) sin Ty.  (46)

Us Vsllz nﬂl/z

Now we may write at once the equations analogous to (26) for the variations
of the a's as functions of the time. We get:
2w

bamgoomyeee = = 3 Gy omyer. o iy €=+ —Enm L DU (47)

Remembering (46) (43) (34) we get with a few reductions

473/2¢ Vmn . .
= ) > _T/_z(A”X“’") Sin Ty [@mngevongi 1o (B F 1)1/2e= 271 Gmatr)t
m,s Vs

F Gy gt T, 22T OmO L]

Gy onyee-

(48)

This is the fundamental equation of the radiation theory. In the applica-
tions we shall encounter equations which differ from (48) either because of the
use of a higher degree of approximation, or because systems containing more
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than one electron are considered. When these cases come up we shall show the
necessary modifications of the Eq. (48).

We shall now discuss some applications of the general theory that we have
developed, with the chief purpose of showing that this theory may actually
be considered as a satisfactory theory of radiation phenomena. For this we
shall work out the following examples:

1. Emission from an excited atom and mean life.

2. Propagation of light in vacuum.

3. A case of interference: the Lippman fringes.

4. The Doppler effect.

5. The Compton effect.

For applications to other problems see the bibliography.

§8. Emission from an excited atom

Let us consider an atom which at the time =0 is in an excited state; let
us suppose that there is no radiant energy in the space surrounding it. We
may consider, for the sake of simplicity only two states of the atom, num-
bered 1 and 2, and suppose that the atom at £=0 is in the state 2. All this
may be expressed by saying that for ¢=0.

A200++:0-00 = 1 (49)

and all the other a's are=0. We know from experience that after a certain
time the atom must go over to the state 1 of less energy and the energy dif-
ference must be found in the radiation field.
We will now show how it is possible to study this process with the funda-
mental Eq. (48).
We put
voar = — v =v; X1g = Xoy = X

Eqgs. (48) give then:

. 4w3i%¢ ] arint
Q1,00-014000 = (_Qh—)_i-I; ;_II-Z(ABX) sin I‘sazuo...o...e i (50)
47312

v
= 1 —27i (vs—»)
@ Es 1 (4:X) sin T'sa1,00--.1,...€~2 £, (51)

dz J0ees0eee
We try to solve these equations by
@20...0... = €7t (52)

where v is a constant which must be determined.
We substitute (52) in (50) and then integrate with respect to £, determin-

ing the integration constant by the initial conditions @1¢g...1,... =0; we find :
47['3/28 v e(—Zri(v—v,)—'y]t — 1
Q1,00 1400 = ‘—‘(A X) sin T ; . 53)
@B)12 p,1i2 " P 2mi(y — v) — v (

We substitute (52) and (53) in (51) and multiply by —e”* and find:
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16732 2 . 1 — elr—2rit-n)t
2. — (4.X)*sin’ T, - .
Qh s Vs - 21!"1;(1/ -_ l'a) -

Yy =

The sum may be calculated by the following method: since the phase,
direction and polarization of the different radiation components are distrib-
uted at random, we may substitute for (4,X)2%in?I', its mean value, taken
over all phases, directions and polarizations; we replace then the sum by
an integral over »,, multiplying by the factor:

8w
— Qvy2dv, (54)
63
which gives, according to (1) the number of radiation components with fre-
quency between v, and v,+dv,. We get then, observing

(4.X)? =1X? sin® T, = 1
that

vodvs.

647!'482 © 1 — e('y—Zri(v,—v))t
y = 2 2f
0

3hc? — 2wy —v,) — v

It may be proved that for small v this integral has the value »/2; we obtain

thus:
3274e?

3hcd

y = »3X? (55)
which determines the constanty. The relation of this constant with the mean
life of the state 2 is easily found: the probability of finding the atom in the
state 2 as shown by (52) is:

By definition of the mean life 7, this probability must be e~¥7; we get then by
comparison

P —— . (56)

We may also deduce from this theory the form and the width of the emitted
spectral line. For this purpose we observe that, after the emission has taken

place, i.e., after a time ¢ long with respect to the mean life, the exponential
{—=2wi(p—ps)—v}t

e becomes negligible; then we get from (53):
dr'e Y 4X)sinT ! (s7)
ceslgese = — 8- 1n 1, :
oo (QR)112 112 ® — 27i(y, —v) + v

The probability that the emitted quantum belongs to the s component is

therefore:

16m%? »? _
— (4:X)?sin? T, .
Qh v, v2 + 472%(v, — )2

(58)

The last factor
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1
v+ 47"2(”8 - ”)2

represents the form of the emitted line; it is identical with the form which
may be deduced in the classical theory for exponentially damped oscillators.

§9. Propagation of light in vacuum

This section and the next one will be devoted to the proof that the results
of ordinary wave theory can be applied to the computation of the intensity
of light both for the propagation in vacuum and for cases of interference.

This has been proved for a general case by Racah and more recently by a
very general and direct method by Heisenberg, who does not use the Fourier
analysis but calculates the amplitude of the field vectors directly.

We prefer however to show here by the use of two examples how the phase
relations between the different components are effective in determining the
propagation with finite velocity and the interference phenomena.

Let A and B be two atoms; let us suppose that at the time =0, 4 is in an
excited and B in the normal state. After a certain time 4 emits its energy
which may in turn be absorbed by the atom B which then becomes excited.
Since the light needs a finite time to go from A4 to B, the excitation of B can
take place only after the time 7/c, » being the distance between the two atoms.
We will show that all this may be deduced from the quantum theory of radia-
tion. We simplify the problem by the assumption that the mean life of the
first atom 4 is very short, in order that the light be emitted from 4 at a very
definite time; we suppose further that the mean life of B is very long. The re-
sult is that the line emitted from the atom 4 is very broad and might be con-
sidered as a portion of a continuous spectrum; on the contrary the atom B
absorbs a very sharp line. We must first modify slightly the fundamental
Eqgs. (48), for the case of two atoms in the radiation field. We use indices and
magnitudes without dash for the first atom A4, and dashed letters for the

atom B.

[am»,,l...,,,... I 2

is the probability that 4 is in the state #; B in the state #’; and the radiation
components in the states #, - - - #, - - - ; the equations analogous to (48) for
the case of two atoms, may be obtained by the same considerations as Egs.
(48). The right hand side will now consist of two terms, each one analogous
to the right hand member of (48) and each one referring to one of the atoms.
We get precisely:

47312 Von . )
o T A Xo) S0 Tt 0 D
ms 8

 Gmrngenomt a2 Omn 1}

Guntnge ey

4xdi% _ o'
™ ¢ Y m'n ’ 3 r 1 iy’
+_(~(E)l—_/5 z —1—/2—(A3X m'n’) sin Iy {anm’ny--n,-f-l-n(”s_{"l) 12g=2mi (¥ iminstvs)
m’s Vs

F Gamrng.omyet. . Mg 22T vt} (60)
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I', and T, are the phases of the sth standing vibrations at the places of the
first and second atom. We may suppose that the atom 4 is at the origin of the
coordinates, and the atom B is on the x-axis at a distance 7 from the origin.
We have then from (4):

27V,

/) =T1,+ 7 cos 0, (61)

c
0, being the angle between the x-axis and the direction of the sth radiation
component.

As before we consider for each atom only two states, 1 and 2, and we put

— y- [ r_
Vo = — Vig =V, Ve = — Vig =V

X =X = X X/ X' =X

For simplicity we admit further that both vectors X and X’ reduce to the
only y-component. At the time =0, the first atom is excited in the state 2,
and the second atom is in the normal state 1; further there is no radiation in
the field; we have thus:

while all the other a’s are 0 for t=0. We must find what is the probability
that, at the time ¢, the first atom has lost its energy and that this energy
has been absorbed by the second atom; this probability is given by:

We have shown in the preceding section that after a time long with re-
spect to the mean life, the energy of the excited atom A is transferred to the
radiation field according to (57). This formula can be applied also in our case,
if we neglect the very small perturbation due to the presence of the atom B.
We may write:

‘ e Y 4X)snT (62)
Q1100+ 150-. = sX)sin T, .
e (@R)112 p,102 — 2mi(vs — v) + v
We put now in (60): n=1,n'=2, ny=ns= - - - =n,= + - - =0 and we get:

_ Al > d (4,X") sin T,/ 2mi (= ug)
- 8 sin 1's'@110...15...67 47 T
@)tz 5 oy ‘

az10...0... =

since the other terms are zero. Substituting (62) in this equation we obtain:

16732 A.X)(A4.X)sinT,sin Ty )
dlgo...u... = — w' Z: ( )( N ) e~ 2Tyt
Qh N v3[27r1,(1/ — ) + 'y]
We integrate with respect to ¢ and remember that for £=0, @120...0... =0. We
obtain thus:

1673e?’ — (4:X)(4,X") sin Ty sin Ty 1 — e 2mitayt

w Y, - (63)

Qh i ve[2wi(v — ) + v] 2wi(vs — V')

ai20...0... =

To valuate the sum over s we must transform it to an integral. For this we
first substitute in the usual way the mean value for the expression (4,X)
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(4.X") sin T’y sin I'y’. Remembering (61), the fact that 4, and o, are perpen-

dicular unit vectors, and that X and X’ reduce to the only y-component, we
find with some calculation:

_ _ XX'T ¢ . 2mver c \? 2wy

(4. X)(A,X") sinT, sin Ty’ = sin + cos

4

4 2mver c 2mvy ¢

( c )3 L2 1r11,r:|
— sin? .
2wysr c

The average is taken over all values of the phase, the direction and polariza-
tion. We suppose now that the distance 7 of the two atoms is very large com-
pared with the wave-length; we may then neglect the square and the cube of
the very small expression ¢/2wv,r, and we write:
cXX' 2mver
(A:X)(4:X") sin T, sin T, = sin .

TVt [

(64)

(65)

To calculate the sum (63) we must now substitute this average value, mul-
tiply by (54) and change the sum to an integral over v,. We get thus:

1 16m3? ®  sin (2mwsr/c)(1 + 270Nt
" v V/X/f [ (2mwer/c)( ) dve (66)
0

2xi(v — vs) + v]27i(v, — V')

The integration can be effected by observing that because of the factor (v,—
v’) in the denominator the values of the integrand are concentrated in the
neighbourhood of the value »’ for the variable »,. Since we have supposed
that the mean life of the first atom is very short, the factor [2mi(v,—»)+
v ]! varies very regularly (that is the line excited by the first atom is so wide
that it can be considered as a piece of continuous spectrum). We may there-
fore take this factor out of the integral putting into it »,=»’. We may also
extend the integration from — o« to -4 o, since, for the same reason, the
terms that we add are negligible. At last we take £ =»,—»’ as a new variable.
We find then:

1 167%  »Xv/'X' f+wsin (2r1/0) &/ +8) (1—e*vitt)

r ¢k

@190...0.-- =—— dt¢. (67
1ot roocth 2mi(— ) v J it £ (67)

The integral may be written:
f + (sin(2wrv'/c)cos2mrE/c) +cos(2nrv'/c)sin(2xré/c)) (1 — cos2mit+ i sin27rt£j)d£
o ’ 2wk
1 . 2w f“’ dt 2w

— cos —Zé(l — cos 2mtE)

= —sin
271 ¢ —— & c
1 2ard’ e dE | 2@r
+ — cos f — sin — £ sin 27#€
27 c — ¢

1 2ar’ L™ | 2wr dt
+ —2— cos f sin — £(1 — cos 27tE) —£~
— c
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1, 2zn p* 2wr dé¢
+ — sin f cos— ¢ sin 2xtE — -
21r 4 —00 c E

The two first integrals are evidently zero, since the integrated functions are
odd. The other integrals can be calculated at once by the integral formulas:

® sin qx ® sin ¢x cos px w for ¢ > p
f dx=1r;f ——dx ="

% — x 0 for ¢ < p.
We find that the integral in (67) is given by:
0 for r/c > ¢t
{ (1/2¢)e=ir'le for ¢t > r/c.
Substituting in (67) we find:
G120 20000 = 0 for b <r/e (68)

1 8w3ie? v Xv' X' ,
— - e?mir'le for ¢ > r/c.
r ¢k 2mi(v — V) + v

The square modulus of @i200... measures the probability of finding the
second atom excited. This probability is therefore zero if £ <r/c, i.e., until the
time necessary for the light emitted by the first atom to reach the second.
After that time the probability that the second atom is excited, is:

1 16732 2 1
] algo...o...l 2 = — DXV,X’ .
' r? ch 41!‘2(1"’ hd V)2 + ’)’2

We notice that this probability is inversely proportional to the square of the
distance 7; we conclude therefore that the theory gives correctly the velocity
of propagation of light and the decrease of intensity with the distance from
the source of light.

§10. Theory of the Lippman fringes

The Lippman fringes are produced as light is reflected from a mirror per-
pendicular to the direction of propagation. They consist in the system of
standing waves formed by the incident and the reflected waves. We will show
now, how this phenomenon may be explained by the quantum theory of ra-
diation.

We must consider a plane mirror S and two atoms, a first atom 4 which
emits the light and a second atom B which absorbs it. We suppose that the
atom A4 (light source) is very far from the mirror, so that the waves reaching
the mirror are very nearly plane waves. On the contrary we suppose the atom
B not very far from the mirror, and we will show that the probability of ex-
citation of B depends periodically on its distance from the mirror exactly as
is to be expected in the classical theory from the position of the maxima and
minima of the standing waves.

We simplify the calculations by supposing that the straight line 4B
(which we take as x-axis) is perpendicular to the mirror. As origin of coor-
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dinates we take the intersection of this line with the mirror; the coordinates
of the atom A4 are x, 0, 0, and those of B are x’, 0, 0. Then x> >x". We sup-
pose further as in the preceding chapter, that the mean life of 4 is very short
and that of B is very long; and that the vectors X and X’ which determine
the transition probability from the state 2 to state 1 for both atoms reduce
to the only y-component.

We have always considered the radiation contained in a volume ; in our
case it is convenient to take the mirror .S as one of the walls limiting the space
Q2. As © becomes infinite the wall .S remains fixed and all the other walls are
taken to infinite distance.

Every standing vibration constituting the radiation field must have S as
a nodal plane. Its y-component must have therefore the form:

Y, 27y,
B, = {Sin [ (aszx + Qgyy + OlggZ) + 68]

12 X

(70)

. [ 27w,

- sm[ (= ase® + oy + ae8) + ﬁa]}
Cs

where 1/2!/2 is a normalization factor; Y, is the y-component of the unit vec-

tor 4,.

By exactly the same method that we used for the deduction of (63) we
find now a very similar equation, obtained by substituting in (63) for 4, sin
I's and 4, sin T',’ the values B, and B,’ which are obtained by putting into
(70) the coordinates x, 0, 0 and x’, 0, 0 of the atoms 4 and B. This formula

is:
1673¢? B, XB/X' 1 1 — g—2milu—")t

'
Q12046000 = 124 Z

Qh R Vs —2mi(vs —v) + v — 2wi(v, — V') .

The sum over s may be effected, as in the preceding chapter by taking first
the mean value of B,B,’ over all the phases and orientations of the radiation
components. We find thus the following formula corresponding to (65):

R c . 2mve(x — %) ¢ . 2mv(x 4 &)

BB/ = sin - sin - (72)
8y, (x — ') c 8ms(x + ') ¢
We substitute this expression in (71), multiply by
(87/¢c*)Qwy2dv,
and integrate over v,. We find thus:
A120:¢:00ee = R~ — Rt (73)

where R~ and Rt represent two terms equal to the right hand side of (68)
where in place of 7 respectively x —x’ and x+x’ has been substituted ; we get:

x — %

0 for ¢t <
c

1 8imde? v Xv' X' ) x — %
e2rw’(z—~z’)/c fOl‘ >
x—a h —27i( — ) + v ¢

~
]
[

(74)
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e
0 for t <
c
Rt = 1 8iwde? v Xv'X' ) , x4+ x
- 6211v'(z+z )e fOl' t >
x4+« 2k — 2ri( —v) v c

The two terms R~ and R* clearly represent the effect of the incident and the
reflected wave. Let us now consider a time ¢> (x+x’)/c. Then both for R~
and R+ the second expressions are valid and we get from (73)

8imde? v Xv'X'

1
@190...0...= . { e2niv’ (e—a') /e
2k —=2mi( —v)+y lx—o

e2riv’ (z+z’)/c} . (75)
x+a
It is evident that this expression has a large value if the two exponential
factors have the same phase. The condition of equal phase is:
2y’ 2w

(x — &) = 2 (x4 &) — 27n
Cc

where 7 is an integer. We get from this:

, m o< N
¥=——=n—

2 2

where N =c¢/v’ represents the wave-length corresponding to the frequency
v’. We see therefore that the places where the probability of excitation is
small (dark fringes) are planes, parallel to the mirror and spaced by a half
wave-length from each other; similarly we find that the places where the
probability of excitation is strong (bright fringes) are the planes situated in
the middle between two dark fringes. We may conclude that the results of
the quantum theory of radiation describe this phenomenon in exactly the
same way as the classical theory of interference.

§11. Theory of the Doppler effect

The change of frequency of the light emitted from a moving source is very
simply explained by the wave theory of light. But it finds also a simple,
through apparently very different, explanation in the light-quantum theory;
it can be shown that the Doppler effect may be deduced from the conserva-
tion of energy and momentum in the emission process.

Let us consider an atom A4 with two energy levels w; and w,; the fre-
quency emitted by the atom when it is at rest is then

v = (wg — wi)/h.

Let us now suppose that the atom is excited and that it moves with velocity

V', its total energy is then:
Wa + %sz.

At a given instant the atom emits, on jumping down to the lower state, a
quantum of frequency »’; the recoil of the emitted quantum produces a slight
change of the velocity, which after the emission becomes V’; the energy of
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the atom is then w;+1m V2. We get therefore from the conservation of energy
W' = (wy + 3mV?) — (w4 3mV"?) = b+ 3m(V2 — V). (76)
The conservation of momentum gives:

hv'
mv' =my — —
¢

where the bold face letters mean vectors. Taking the square we get:

22 hy
— 2mV — cos 0
c? c

m2V'? = m2V?

0 being the angle between the velocity and the direction of emission. From
this equation and (76) we get, neglecting terms in 1/c2:

v
v = b(l + — cos 0> 77)
¢

which is the classic formula for the Doppler effect to a nonrelativistic ap-
proximation.

We will now work out the theory of the Doppler effect with Dirac’s
theory of radiation. We shall see that the interpretation of the Doppler ef-
fect in this theory is very similar to its interpretation in terms of light quan-
ta; and it is due essentially to the changes in momentum due to the recoil of
the emitted light. In all the examples which we have worked out till now, we
have used the approximation (45), which is obtained by supposing that the
portion of space where the electron moves is so small, that the phases I, of
the standing vibrations can be considered as constants in it. Now we shall
see that this simplification can no longer be made if we wish our theory to
represent also the impulse properties of light quanta. So that for the theory
of the Doppler effect and the Compton effect it is necessary to consider that
the phases I', are actually variables.

We simplify the problem by considering the emitting atom as constituted
by a proton (charge e, mass m;, coordinates xi, v1, x1=X) and an electron
(charge —e, mass ms, coordinates xs, vs, 2,=X5). The Hamilton function for
the system consisting of this atom and the radiation field is the obvious gen-
eralization of (15); it is:

2 2 8 1/2
=22 Pyt S G+ 2emip) — —e—(—’r) 2 (4upy)sin T,

2m1 211’L2 my Q

1/2
+2 (8—-"> S (4ups) sin T,.

ma Q
We take now as new coordinates: the coordinates
¢ mi1X1 -+ meXs
S =

my -+ my
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of the center of gravity, and the relative coordinates of the two particles:
X = X 1 Xz.
The momenta conjugated to £ and X are:

n = Méandp=m<&—-@>
my M,
where M =m;+m, is the total mass of the atom and m =mm,/(m1+m2) is
the relative mass.
We make the assumption that the dimensions of the atom are very small
compared with the wave-length. We may then substitute for I';, and T', the

value:
2

c

Ty = (e, ) + B (78)

of the phase in the center of gravity. The Hamiltonian of the system becomes
then:

2 2
Ho= ook oV (X) + Z0p2 + w0

T 1/2
- %(%) 2°(4,, p)sin T, (79)

We consider now the last term

e (8m\/?
= —— (5-> > (4, p) sin T, (80)
m s

as the perturbation. The unperturbed Hamiltonian is:
1’2 P2
Ho= —— 47—+ eV(X) + L2 + 2ninis). (81)
M 2m P

The first term of (81) is the Hamiltonian of the translatory motion of the
center of gravity; the corresponding eigenfunctions are:

Q1/2p27i(m,E) [ (82)

where 2712 is a normalization factor; 7, represents the momentum of the
atom, which can be supposed to assume discreet values, since the atom can
move in a finite volume Q.

The second and third term of H, represent the Hamiltonian of the inter-
nal coordinates of the atom; the corresponding eigenfunctions are #... The
last term of Hj is the Hamiltonian of the radiation components whose eigen-
functions are:

U lhng * * * Un, * -

The eigenfunctions of the unperturbed system are given by the product:

Gunrmgeemgers = QI B - -l (83)
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and the corresponding eigenvalue, as in (34) is the sum
Euwngeomgeov = 1/2M + Epr 4 hosma + -+ -+ hoang + - -+ . (84)

The probability of the state nn'n; - - - n, - - - is given by the square of the
modulus of the quantity:

uningesong s

The a’s, according to the general formula (26) satisfy differential equations,

analogous to (47)

. 27['1: . ’ ’

Guniny-eonge e = —= D Cmmmpemge Bnnteoosmme .. €27 Enn’ o ~Eun’ o) tIh - (85)
B ommimyeeemyens

where 3Cun....mm’... represents, according to (27), the matrix element of the

perturbation energy (80) corresponding to the transition from the state with

indices m, m’, m,, - - - to the state », ', ny, - - - ; we have:

BCn - immt - - =f f---q_snnr...{}c(ﬁmm:...dédquy~'. (86)

Substituting in (86) the expressions (80) and (83) we see that the integral
(86) splits in the product of integrals. We are interested in the factor con-
taining the coordinates £ of the center of gravity; this factor is, remembering
(78):

1 . . 27w, )
_Q_ fe—zm(rmz)/h sin {_____ (Ols, £+ 53}32“(""'5)/"(15 (87)
c

where df represents the element of volume. Expressing the sine in terms of
exponentials, (87) becomes:
g ibs e~
—— | e@milh) [nm—nnt(hrs/e)as E1 gt —
2iQ 2iQ

fe(zn'/h) [m—tn— (kv [e)eta E1 JE

The integrals have generally a value very near to zero, they are very different

from zero only if
Nm — Nn + (hys/c)aa =0 (88)

since in this case one of the exponentials is equal to unity. Eq. (88) is the con-
dition of conservation of momenta, since 7., and 7, are the momenta of the
motion of the center of gravity of the atom and (kv,/c)a, is the moment of
the emitted quantum; the double sign arises from the fact that the s-compon-
ent of the radiation field is a standing vibration which may be considered as
resulting from two progressing waves moving in the opposite directions de-
fined by the unit vectors +a, and —a,.

We see therefore that the conservation of momentum in the emission pro-
cess follows from the radiation theory. That also the energy principle must
hold results from Eq. (85), since only the terms with

Epmre.. = Eppr...

give an important contribution.
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Now we have shown that the formulas for the Doppler change of fre-
quency can be derived if we assume the conservation of energy and momen-
tum. The Doppler formulas can therefore be deduced from the radiation
theory. We could also deduce from this theory the formulas for the intensity
of radiation in different directions; the results are identical with the results
of the classical theory.

§12. Scattering of radiation from free electrons

The scattering of radiation from free electrons can be considered in two
different approximations. The first approximation leads to the classical
Thomson formula for the intensity of the scattered radiation with no change
of frequency. The second approximation gives the phenomena of the Comp-
ton effect where the momenta of light quanta are considered. We shall see
also that the theory of scattering carried out by help of Dirac’s relativistic
wave function for the electron is essentially different from the present non-
relativistic theory. In this section we shall always discuss the nonrelativistic
theory.

It can be shown that the simple interaction term (16) between the radia-
tion and the electron is not responsible for the scattering from free electrons,
not even in first approximation. This is connected with the well-known fact
that the free electron has no probability of spontaneous transition between
two states » and m with different velocity. The interaction term (16) in-
volves the spontaneous transitions; therefore it may be neglected for the case
of the free electron.

The interaction term which is responsible for the scattering is the term
(17) which we have hitherto neglected, since it is smaller than (16) and only
becomes important if the effect of (16) is zero. Let m and » be two (transla-
tional) states of the free electrons. The corresponding eigenfunctions can be

written: .
= Q—1/2027i(pn,2) [h. = O~1/2p27i(pm,2) [k .
¥ Q e 5 Ym Q12 9

where p, and p . represent the momentum of the electron in the states #» and
m; Q712 s the normalization factor. »

To get a scattering different from zero, we need consider the interaction
term (17). By help of (12) this term can be written in the form (18). We must
first calculate the matrix elements corresponding to (18); then we shall sub-
stitute them in a formula analogous to (26) in order to find out the variations
of the a’s with the time. This calculation may be carried out to two different
approximations. In the first one the supposition is made, that the phase I, of
the waves can be regarded as a constant; this approximation yields simply
Thomson's formula for the intensity of the scattered radiation and is equiva-
lent to neglecting the momentum properties of light quanta. In order to get
the theory of the Compton shift of wave-length it is necessary to consider the
dependence of the phases I' on the coordinates. We shall at present restrict
ourselves to the first approximation and consider the I', as constants.

By means of (38) and (39) it may be very easily proved that a matrix ele-
ment of H®,
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Hr(nz.il,nz.---im,ml,mz,-»-
is only different from zero if the following conditions exist:
(a) n=m
(b) the numbers #nz2 - - - with the exception of only two, say #, and #,,
are equal to the corresponding indices mm, - - -
(¢c) ms=n,+1 and m,=n,+1 (where the + signs are incoherent).
If these conditions are satisfied we get:

@) e2h(4,4,) sinT,sinT,

Hn H -
s noingtl ngtl
amsd (vs v5)/2

(”v + 1)1/2

PRI

(n, + 1)”2'. (90)

nallz

where in the last two terms the upper or the lower expression must be taken
according to the + or — sign in #,+1 or in n,+ 1. Putting these matrix ele-
ments in the general formula (26) we get the following differential equations
for the a’s:

24e? (4.4,) . .
= — sin ' sin T,

mQ T (evs)l/?
X [aﬂﬂl"'ﬂ:+1"'ﬂ,+1"' [(ns + 1) (n,, + 1)]1126—2’ri(”‘+"')t
F Gungeenmgmteeengsg s [Ma(Me + 1) |12gH2mi0r0)E (91)
F Gungeeongiieengt... [ (e A 1)1, ] M2 2mi0vot

F Grngeeongte s ngt. - (Msty) V2 H2TiOHIOL]

Gy ge e omge e

To get the intensity of the scattered light, we make the assumption that at

the time £=0
B 0,00 nge-r0pees = 1 (92)

while all the other a’s are zero. This means physically that there is a certain
amount of radiation in the field; this is the primary radiation of frequency »,

and energy density
w, = nshv,/Q. , (93)

We must find the intensity of the radiation scattered in the component o.
The probability that a quantum is scattered in the radiation component ¢ is
given by the square modulus of

an,o...n,_l,...l,... .

If we limit ourselves to a very short time ¢, we might still assume (92) to be
valid in first approximation; and we obtain therefore from (91):
2162 sin T, sin T,

Gny0erongmlenotyeee = — —— (Aedy) —————— n,t/2e7 270t (94)
’ et mQ ( ) (vevs) 112 *

since only the third term in the square brackets gives a result different from
zero. Integration with respect to time, with the initial condition @a,o, . . .n,~1,-
eeito...=0for t=0 yields:
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e? (4,4,)sinT,sinT, e e emilra)t —
Ny .

Qpeving—levelgess =
’ TmQ (vevs) 112 Vs — Vg

The probability for the scattering of a quantum in the component ¢, is the
square modulus of this expression, i.e.,
4et  (4.,4,)%sin?T,sin?T,  sin? w(v, — v,)t

T2m2Q02 VeVg (vs — v5)?

Summing over the index ¢ we obtain the probability for the scattering of a
quantum in any component of radiation. This sum may be transformed into
an integral by a method similar to that described in section 8. We first sub-
stitute for (4,4,)?, sin’T',, sin?T', their mean values 1/3, 1/2, 1/2. Then we
multiply by the number of radiation components (8w/c®)Qv,%dv, with fre-
quency between », and »,}dv, and integrate over »,. We obtain:

8 et m ° sin?n(y, — v,)t

31 c*m? QV, 0

Vg QV,.
) (V«v — v,)?

The integral can be evaluated by observing that its values are all in the
immediate neighborhood of »,=»,. (The scattered radiation has the same fre-
quency as the primary light.) We can therefore extend the limits of integra-
tion from —o to + and substitute », for the first »,. By the integral for-

mula
+° sin? kx
f dx = 7k (95)
o x?
we obtain:
8r et m,
N=— —¢ (96)
3 m? Q

as the number of quanta scattered during the time ¢. The scattered energy is:

8r et
hv,N = — Wb 97)
3 cm?

This expression coincides with the well-known formula derived by Thom-
son from the classical theory of radiation.

The theory carried out to this approximation gives no account of the
Compton shift of wave-length, which is due to the momentum of light quan-
ta. A theory of the Compton effect may be obtained if we calculate the ma-
trix element:

S (98)
without the assumption, which we have hitherto made, that the phase T', of
the radiation components can be considered as a constant over the space
occupied by the electron. From (18) and the expressions (89) of the eigen-
functions of the electron we see that the factor in the matrix element (98)
depending on x, y, z is:
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(1/9) fe_“i“’m’)/" sin Ty sin T,et2ri(enz)Ihdxdyds. (99)

We write the sine functions in terms of exponentials and remember that

2w, 2w
(e, X)+8; T =
€ Cc

Ps = y"(a’, X) + ﬂv-

We see therefore that (99) splits in a sum of terms like:
etiBatiBe

e2mi(Pm—pnz (hve/c)agt (hvg/c)ag , X) /hdxdydz .
4Q

If the coefficient of X in the exponent is considerably different from zero, the
integral over the space Q vanishes, since the exponential is a rapidly varying
function with mean value zero. We get a term different from zero only if the
coefficient is practically zero. That is:

hv, hv,
s T
c c

Pm — pn £ a, = 0. (100)

This is simply the condition of conservation of momentum. The double signs
arise from the fact that a stationary wave is the superposition of two pro-
gressive waves of opposite directions.

From the conservation of momentum, the Compton wave-length change
could be deduced with a method very analogous to the one used in the or-
dinary theory of Compton effect. We will not enter into the details of this
theory, from which even intensity formulas in nonrelativistic approximation
can be derived.

Part II. TrEORY OF RADIATION AND DIirRAC’s WavE EqQuUuaTIiON

In the second part of this work we shall first show how the general formu-
las of the previous section can be derived if we take as a basis Dirac’s rela-
tivistic wave equation for the electron, instead of Schrédinger’s equation.
After this we shall study the very peculiar role which is played in the theory
of light scattered from free electrons by the states of negative energy, char-
acteristic of Dirac’s theory of the electron. We shall also discuss the possi-
bility of radiative transitions from states of positive to states of negative
energy of a Dirac electron. These transitions in reality certainly do not take
place; nevertheless it has some interest to see how they are derived from the
present theory, since a correct theory should find some way of preventing
them.

§13. Dirac’s wave function of the electron

We shall in this paragraph collect some formulas on Dirac’s wave func-
tion which will be of use later.

It is well known that in Dirac’s relativistic theory the electron at a given
time is specified by four coordinates. Three of them, x, y, 2, are the ordinary
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positional coordinates; the fourth coordinate ¢ will represent some internal
degree of freedom; we shall call o the spin coordinate. While the coordinates
x, ¥, 2 have a continuous range of variability from —o to 4, the spin co-
ordinate o can assume four values only; it is no limitation of generality to call
these four values 1, 2, 3, 4. The wave function ¥ will depend on %, v, 2, o:

Y = ¢(x) Y %, 0')- (101)

Since the variable ¢ takes only a finite set of values, it is often convenient to
write it as an index:

¥ = ¥o(x, 9, 2). (102)

The wave function is thus represented by a set of four functions ¥, (x, y, 2),
¥alx, ¥, 2), Ya(x, ¥, 2), Ya(x, ¥, 2) of the space coordinates only.

In Dirac’s theory of the electron two types of operators are to be con-
sidered. The operators of the first kind act on the dependence of ¥ on the
space coordinates; for instance:

. B
%2, x =—— .,
» %9 pe 2wt dx

A second kind of operators acts on the dependence of ¥ on ¢. The most
general type of linear operator of this kind is a linear substitution on the four
V1, ¥, ¥s, ¥u. Therefore these operators are represented by matrices of the
linear substitution; they have four rows and four columns. We shall consider
chiefly four operators of this kind, v:z.,

0 0 0 1 0 0 0 —i
0 0 1 0 0 0 i 0
1o 1 0 of ™ lo=i o of
1 0 0 0 i 0 0 0
(103)
0 0 1 0 1 0 0 0
0 0 0—1 0 1 0 0
Yz = 5 0=
1 0 0 0 0 0—-1 0
0—1 0 0 0 0 0-—

For instance the effect of the operator v. applied to the eigenfunction Y=
(Y1, ¥a, Y3, Y4) is to change it in vy = (Y4, ¥s, Y2, ¥1). Similarly

YW = (— Wa, Wa, — W, W1); Y¥ = (s, — ¥, ¥1, — ¥a);  (104)
= (Y1, Y2, — ¥, — ¥a).
The v’s and 8 satisfy the well-known relations
.2 = 'sz =72 =8 = 1; Yy¥: + v2vy = 0 and similar
Y6 + 6y, = 0 and similar.

We will very often summarize v, vy, v. by a g-vector (that is a vector whose
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components are g-numbers) v. It is well known that v, v, ., ¢d can be con-
sidered to transform as the four components of a four vector; our vector v is
the space component of this four vector.

Now we write down the well-known Dirac’s relativistic Hamilton func-
tion for the electron in the form:

eU .
W = eV — c('y, p— ——) — mc%. (105)
c
The product containing vy is to be considered as an ordinary scalar product;
V' and U are the scalar and the vector potential.
The Schrédinger equation corresponding to the Hamiltonian (105) can be
written putting in evidence the four Y 1¥:¥s¥s. We obtain, remembering the
meaning of the operators contained in (105) the four equations:

hao i} ]

(me? + W — eV)gy = ——C-,[—‘pi—-i-‘-&i s
2ril dx dy 9z | (1062)

+ e[(Us = iU + U]

k[ o a 7y

(me® + W — eV)gs = —f—-[j—s [
2ril 0x o0y 0z (106b)

+ e[(Uz + iUU)‘p3 - Uz‘l/d]

[0 d 2

(= me* + W — eV)ps = —ff[j—ﬁ [ o
2rildx a9y 0z _ (1060)

+ e[(Uz — U + Uz\l/l]

h[d g W]

(—me+ W — eV, = —i—[—\b—l-l—i—ﬁ-—-Jﬁg

2riL ox ay 90z |
(106d)

+ e[(Us + iU W1 — Une].

It can be proved that the dissymmetry in these equations is only appar-
ent; it arises in some way from the fact, that the spin coordinate has been re-
ferred to the z-axis, which has therefore a different treatment.

The energy W contains the intrinsic energy mc? of the electron; its values
are therefore in the neighborhood of mc?. Aswell known, the Hamiltonian (105)
has also besides these “normal” eigenvalues, “anomalous” ones, which lie near
the value —mc% These negative eigenvalues which have certainly for the elec-
tron no physical meaning, would correspond in some way to states of an elec-
tron with negative mass. They are supposed to be due to some fault either in
the theory or in its interpretation but the tentative assumptions which have
been made to get a correct theory cannot at present be claimed successful.
In the following sections we shall see the importance of the negative states
for the interpretation of actual phenomena, e.g., the scattering of light. Any
theory which would try to get rid of the negative states by simply striking
them away, should be very careful not to remove the scattering properties of
the electron at the same time.
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We will now consider for a moment some properties of the normal states
with positive energy. Since the energy W lies near mc?, it can be conveniently

written:
W =me + E (107)

where E represents the ordinary energy without the term representing the
intrinsic energy. For the sake of simplicity we neglect in (106) the terms de-
pending on the vector potential U. We see now thatin Egs. (106a) and (106b)
the coefficient of ¥, and ¥, is very large: (2mc?+E—eV), while 3 and ¢4 in
the first side of (106c) and (106d) have a much smaller coefficient: (E—eV).
From this we infer that ¥, and ¥, are much smaller than y; and ¢, From
(106a) and (106b), neglecting in a first nonrelativistic approximation E—eV
with respect to mc?, we obtain:

i (am W ff_a)

—_—

ox dy 9z
ih (a\ﬁs .03 3‘#4)

e 4mme
(108)

= i
& dx dy dz

4rmce
(from these equations we see that ¥; and ¥, are smaller than 3 and ¥, by a
factor of the order of magnitude v/c). We substitute (108) in (106c) and
(106d) always putting the U’s equal to zero, and obtain both for y; and ¥,
the ordinary Schridinger equation

2

(E - eV)lPa + A!/la =0
8wim
(109)
52
(E— eV¥a+ -AYy =0
81im

We see therefore that in the nonrelativistic approximation ¢3; and ¥4 are
eigenfunctions of the ordinary Schrédinger problem, corresponding to the
same eigenvalue. Therefore if there is no degeneration in the Schrédinger
problem ¥; and ¥4 can differ only by a constant factor, from the normalized
eigenfunction corresponding to the eigenvalue E in Schridinger’s equation

2

E — eV)w + Aw = 0. 110
( ) —rm (110)
We can take for instance either:

\1’3 ; w, ‘l’4 = 0

or:
Vs=0, Yys=w

These solutions correspond to the two possible orientations of the spin with
respect to the z-axis. From these expresssions for ¥s and ¥4, and (108) we ob-
tain the complete expression of the four components of { in the form:
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th 0w ik fdw  dw

A R YL
drmec 9z dmwmc\ dx dy

th (0w dw th dw
Vo = —~—z——>,— — 0, w]
4drme\ dx ay 4wme 0z

Y« and Y are the eigenfunctions corresponding to the two orientations of the
spin.

We will now write also the expressions of the exact Dirac wave function
for the case where there are no forces acting on the electron (V=0, U=0)
and the components of the momentum p,, p,, p. are therefore constants.
Corresponding to these values of the momentum components, ¥ must con-
tain the space coordinates x, ¥, 2 in the exponential factor e2ri(psz+pyutpe2)/h
The four components of ¥ will therefore be products of four constants Bj, By,
B;, B, by this factor:

¥ = [By, By, By, Bylerritmeztrvtoain, (112)

Putting in (105) this expression for y and taking V=0, U=0, we get for the
B’s the following equations:
(me2 4+ W)By + ¢(pr — ipy)Bs + cp.B;s =
(me? + W)By + c(ps + ipy)Bs — cp.Bs = 0
(— me® + W)B;s + c(pr — ipy) B2 + cp.B1 =
(— me?+ W)By+ c(ps + ipy)B1 — cp.B2 = 0

It can be readily proved that these linear equations have not identically van-
ishing solutions only if:

} (111)
J

(113)

W? = m2ct 4 ¢*p?
that is:

W = £ (mict + c2p?)\r2. (114)
This is the ordinary relativistic relation between energy and momentum. The
+ sign corresponds to the ordinary positive values of the energy; the — sign
to the anomalous negative energy values. For each of the two energy values
(114) there are two linear independent solutions of (113) which correspond
to the two possible orientations of the spin. They can be written in the form:

242 —1/2 .
[B,, Bs, By, 34]=<1+__Cﬁ_) b _cotin) 1,0]
e - ey e (115a)
a
cp? TUIE (P ipy) cps ]
Bi. By. Bs. Bil={14—-"—— _ , ;0,1
[ 1, D2y D3, 4] ( +(mc2+W)2> | me:+Ww mcz—{—W
for the positive energy values; and in the form:
2 42 —1/2 . L+
(B, Bs, Bs, B4] =(1+—CP———> 1,0, cp , c(p +1Pu):|
(me*—=W)* mA—W' me—W (115b
(B, Bs, By, B ]_<1+ cp? >‘1/2 -0 . c(pa—1ipy) cp: ] )
1, D2, D3, D4 = (mcz—-W)Z B » mei—W ) et — T

for the negative energy values.
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The normalization factors (1+4¢2p?/(mc? + W)?)~Y2 have been so chosen that
the sum of the square modulus of the B’s is unity. For vanishing momentum
p, the B’s take the very simple expressions:

[B.B:B3B,] = [0010]
[B1B:B3B,] = [0001]
[B,B:B3B,] = [1000]

[B1B:BsB,] = [0100] }

} W = 4 mc?
(115¢)

= — mc2.

§14. Radiation theory in nonrelativistic approximation

We shall restrict ourselves to the case for which the electron of our atom
can be considered in an electrostatic field of force, and the only nonelectro-
static forces are those due to the radiation field. In Eq. (105) we may there-
fore suppose that V is independent of the time, and represents the electro-
static potential of the atom, while U vanishes if we neglect the interaction of
the atom and the radiation field; if we do not neglect this interaction we put
for U the expression (12) of the vector potential of radiation. The Hamilton
function (105) of the electron becomes then:

8r\1/2
eV — c(y, p) — mc? + ec <—Q~> > (v, 4)¢ssin T (116)

where the last term represents the effect of the radiation field.

We get the Hamilton function of the complex system of the atom and the
radiation field, adding to (116) the Hamiltonian (11) of the radiation. We get
thus:

2
H = ¢V — e(y, p) — me® + Z(% + 21r2us2q52)

8m\ /2
+ ec (—5> (v, As)gs sin Ty, (117)

The Hamiltonian function (117) can be split up into the sum of an unper-
turbed Hamiltonian

2
Hy = eV — c(y, p) — me% + Z(% + 27r2v82q32> (118)
and a perturbation term:

8\ 1/2
3 = ec <~§> > (v, Ad)gssin T, (119)

representing the interaction energy.

The eigenfunctions of the unperturbed problem represented by H, can be
very easily written, since H is the sum of a term containing the coordinates
of the electron only, and of terms each containing the only variables q,, p, of
the sth radiation component. The unperturbed eigenfunctions are therefore
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products of eigenfunctions of the atom and the radiation oscillators as in for-
mula (31)
Prngnge-ongers = Unlnlng * * * Uy * * * (120)

where the symbols are the same as in (31).
We must now calculate the matrix elements of the perturbation (119).

Brning: - ong---immymae e omyeee +

Its calculation is practically identical with the calculation for the der-
ivation of (41). It is found that the only matrix elements which don’t van-
ish identically are:

h\Y2 1

Scmung'-'n,"';mﬂlnz"‘"ail"' = 86("—) "-—‘(D,nm, As)
aQ/ v l2?

(m, + 1)1/2
(ns''%)
where the upper or the lower expression of the last factor must be taken ac-

cording to the two possibilities m,=n,+1 or m;=n,—1. The vector Dn
has the following meaning:

(121)

Dypm = fﬁ,{y sin I's#tmdw (122)

where integration must be extended over all the configuration space for the
electron (that is: integrate over the space coordinates x, y, 2 from — to
-0, and sum over the four values of the spin variable).

The expression of D, can be very much simplified if we make the as-
sumption that the dimensions of the atom are much smaller than the wave-
length. In this case we may consider sinI', as a constant all over the space
occupied by the atom and take it out of the integral (122). We get thus:

Dinm = sinT, f B YUndew = sin Tyyam (123)

where v.» is the matrix element of the operator+y.

We calculate the last factor by the nonrelativistic approximation (111)
for the eigenfunctions. We take first both for %, and % ., eigenfunctions of the
type Y. (spin in the positive z-direction). We have:

th dWm th [OWnm OWm
Uy = ’ + 1 y Wm, 0.
drme 0z  4damc \ dx ay

Let us calculate the x-component of the vector (123); remembering the mean-
ing of v, we obtain:

l:o ih (aw,,, n .aw,,.) ih a'w,,.:]
m = Wany i .
v ’ drme \ ox dy " dwme 0z

We have also:

[ itk dw, ik [dw, R 6w,.> ]
Ay = | — ) — -1 , Wny 0 1.
4wmc 0z 4mrme \ ox ay
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We get [#.y.%mdw, summing up the products of the corresponding four com-
ponents of the two last expressions, and integrating over all space. We get:

th 0w, OWm
f B sUmdw = — f Wan — Wy dr
4nme Ix x

h a'w,. i} Wm
- f Won + w, dr
4rme .9y dy
ih OWm th i)
= Wy dr

—21rmc dx _4armc Ec

h ]
,.wmd—-————f— 1w Wi )T .
(Wawm)dr . ay('w'w)-r.

The last two integrals can be transformed by Green's theorem into surface
integrals extended over a surface at infinite distance; since the eigenfunctions
w, and w, decrease very rapidly they vanish. We obtain therefore:

ih W
f B 2Umdd = —— | w, dr.
2wme dx

Calculating with a similar method the components y and x we obtain vec-
torially:

ih
f Boytimdes = — f 1, grad Wdr (124)
2mme

which shows the affinity between the operator v of Dirac’s theory and the ex-
pression —p/mc= —v/¢ of Schrédinger’s theory (remember that p~(h/277s)
grad). ‘

From (42) (observe that the #’s in (42) are the Schrédinger eigenfunctions,
so they correspond to our present w’s) we obtain now:

f Baytindes = 23/ 6)9mnXom (125)

where X, is the matrix element representing the radius vector in Schrédin-
ger’s approximation. From (123) and (121) we obtain at last:

E\Y2p,, R 1)1/2 .
5Cnn|~--n.---;mnlu-n,il--- = 271"1:6(—') d (A.X,,m) [( + ) ]smI‘, (126)

0 ,,.112 mllz

which is identical to (46) derived previously.

This shows that in the present nonrelativistic approximation the results
obtained for the radiation theory with Dirac’s wave function are completely
identical to those derived in Part I with Schrédinger’s wave function.

We notice further that (125) has been derived on the assumption that the
states # and m have their spins pointing in the same direction. If their spins
point in opposite directions, the result is zero. This fact can at first sight seem
contradictory, since it means that there are no transitions between states with
opposite spin directions. But we must remember that we have made the cal-
culations on the hypothesis that the eigenfunctions of the Schrodinger prob-
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lem are not degenerate. The effect of this is that there is no coupling between
spin and orbital movement, as in s-terms; where changes of spin direction are
observed, this is only due to the coupling of spin and orbit and if this coupling
is loosened, as in Paschen-Back effect, no changes of spin direction actually
occur. :

§15. Dirac’s theory and scattering from free electrons

The theory of scattering of light from free electrons has some interest, as
we have said, because it shows in a very striking way the actual importance
of the states with negative energy even for very real phenomena where these
mysterious states do not explicitly appear. This theory can of course be car-
ried out either to the approximation of the Compton effect or to the approxi-
mation giving simply Thomson's coefficient of scattering and no change of
frequency. Since the essential features of the theory are conserved also if we
neglect the change of frequency, we shall carry out the theory to this approxi-
mation (i.e., we shall not consider the momentum properties of light quanta).
The exact theory leads to the intensity formula of Klein-Nishina.

The approximation introduced by neglecting the momentum properties
of light quanta is equivalent, as we have often said, to considering the phase
T, of light constant over the place occupied by the electron. We may also
suppose that the velocity of the electron during the process of scattering is
always negligible, since we neglect the recoil of the scattered quanta. We can
take therefore the eigenfunctions of the electron in the very simple form
(115c¢) corresponding to velocity zero. We shall indicate the four states (115c¢)
by the indices 1, 2, 3, 4. States 1, 2 are states of positive energy +mc?, with
spin pointing in the direction +2 and —z; states 3, 4 have negative energy
—mc? with the spin pointing in the directions +3.

We will suppose that at the beginning (£=0) the electron is in the state
1 and there are #, quanta in the s-component of radiation (primary radia-
tion). We can put therefore:

0100 m0ee = 1 (127)

while the other a’s are zero. To find out the amount of radiation scattered
into the o-component, we must find the valueof @1 0. . .ny—1, . . .1, - . . at the time
t. Now the matrix element of the perturbation corresponding to this transi-
tion is zero, since two radiation components (s and o) change their quantum
number; the transition can therefore occur only through an intermediate
state, which can combine both with the initial and the final state. It is easily
seen that there are only four such states:

(3J hs — 1) 0): (47 ns — 1) O)y (37 s, 1)) (4) 7 1) (128)

for brevity only the quantum numbers of the electron and of the radiation
components s, ¢ have been indicated. The states (2, n,—1, 0) and (2, #n,, 1)
have not been considered since it is immediately shown by the definition that
v12=0 so that these states do not combine.

The intermediate states (128) are states for which the electron has a
negative energy; without these states of negative energy no scattering proc-
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ess would be possible. We will now show, that the scattering calculated with
the intermediate states (128) actually gives Thomson’s intensity formula.
For this we must first write the matrix elements corresponding to the
transition from the initial state (1, #,, 0) to the intermediate states (128), and
from these states to the final state (1, n,—1, 1). From (115c) we immediately
find:
Yz13 = 0; vy13 = 0; 7213 =1

L (129)

I

Youu = 1; ‘Yyi4 = 1; Yeu

Interchanging of the indices changes the corresponding v into its complex
conjugate value: (e.g., ¥,u= —1). From (121) (123) (129) we obtain the re-
quired matrix elements; they are:

A \'2sin PaA s
3C3,n,—1.0'r1.n,,0 = ec\ — szWs
7 V,llz
\!2sin T, ,
l'}cé.n,--l,(:l'vl,n‘,0 = ec\ — — (Asz - 'ln/lau)n.ul/2
w2 /2
. (130)
5 h\!?%sin I‘,A
; =e|—) —
3,n,,11,n,,0 70 Va1/2 oz
A\'2%sinT, “ A,)
I4,my, 151,m5,0 = €C| — oz — tAgy
' : a2 vell?

for the transitions from the initial states (1, #,, 0) to the intermediate states
(128); and

E\Y2sin T,
HCi,n—1,138,n—-1,0 = €C{ — )} ——
1,mg—1,133,n,~1,0 0 poile oz
E\Y2sinT, .
3C1,m—1,14,n,-1,0 = €C <) e Aoz + id,y)
T Vg
! (131)
E\'2sin T,
5(31.11,_1,1:3.%.1 = ec\ — Aan,tl?
7 v /2
E\Y2sin T, .
Gcl,ns—l.l;‘l,n‘,l = €c —5 172 (Asx + zAsy)nsllz
U Ve

for the transitions from the intermediate states to the final state (1, #n,—1, 1).

From these matrix elements and the general formula (26) we easily cal-
culate the amplitudes of probability for the intermediate states. If we limit
ourselves to a very short interval of time we may still suppose (127) to be
valid in first approximation, and we obtain from (26):

271

. PP I
Q31,0 = — —— 5c3.n8~1,0;1.ns.ﬂal,n,,032“( 2me " —hvg) t/h

(notice the very big change in the energy due to the fransition of the electron
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from state I with positive energy +mc?, to state 3 with negative energy
—mc?). Putting @1,,, 0=1 and remembering (130) we obtain:

. 27 A\Y?sin T, o,
Agn—10 = — —ec|l — n81/2A“e~21rs(2mc +hvg)tlh
e 1/2
il Ve

h

Integrating and neglecting hv,, in comparison with 2mc? in the denominator
we obtain:

e [ h\'*sinT, o
03‘71‘_1'0 = e | — n51/2A856*21r;(2m¢ +hv,)l/h' (132)
2mc \r v,1/2

Notice that the integration constant should have been determined with the
condition @3 a,—1,0=0 for {=0; instead we have chosen the constant so that
the mean value of a3,n,1,0 is zero. This corresponds exactly to what is done
also in the classical theory of dispersion of light from a harmonic oscillator;
one considers in that case the motion of the oscillator to be represented sim-
ply by the forced vibrations and one neglects the vibrations with the char-
acteristic frequency of the oscillator which are superposed on them. The
justification of this classical proceeding lies in the well known fact that the
vibrations of characteristic frequency are very rapidly damped by the reac-
tion of radiation, so that, in the permanent state, only the forced vibrations
remain. The justification in our case is quite similar; it could be shown that
the effect of an integration constant added to (132) would be very rapidly
damped from the reaction of states like (1, #n,—1, 1) which has been neglected
in our calculations.

The amplitudes of probability for the other intermediate states are de-
duced with exactly the same method as (132). They are:

e [ h\Y2%sinT, \ . eriamet et/
Qyp—1,0 = — | — w2 Ay, — 14,y) e 2mi@me )t
2me \mwS2 RZE
e [ h\Y?%sinT, .
a3n,1 = —\|— A”e—Z'n‘(ch —hvg)tlh (133)
T 2me\ar v 112 ,
e [/ h\Y2%sinT, .
Agn 1= —|— —_— (Aaz —_ iA’u)e—Zri(ch —hra)t/h
TN 2me \r o tl2

We apply now once more the general formula (26) to the calculation of the
amplitude of probability for the final state. We get:

5 _27r__i 275 (2me+hva) t/h
C1ne—1,1 = — [Jcl,n.—l,1:3,71,—1,003,7;,—1,06" Ti(2methva)t/h L. ]

h

where similar terms for the other three intermediate states have been
omitted. With (132) (133) and (131) we find now:

. 2% e [ n\1? . .
C1ne—1,1 = — — — sin ', sin T, (4,4 ,) 2 Cava) t/h, (134)
Q m \ver,
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This equation coincides exactly with equation (94) obtained in the theory of
scattering made without using Dirac’s wave equation. By exactly the same
method used for (94) we deduce from (134) Thomson’s formula for the in-
tensity of scattered radiation.

The very profound difference between these two theories of scattering
should be emphasized; in the first theory, deduced from the Schrédinger wave
equation for the electron, the scattering effect was due to the presence in the
Hamiltonian of the term (17). This term is quadratic (and not linear) in the
vector potential, and therefore enables transitions for which a quantum
jumps in a single act from one radiation component to another. In Dirac’s
wave equation only terms linear in the potentials are contained; this has the
effect that no direct transitions between two states can occur, if more than
one radiation component changes its quantum number. Therefore it would
seem probable at first sight that Dirac’s relativistic free electron has no scat-
tering properties. We have shown however that this conclusion is wrong; the
scattering properties come out if one properly takes into account also the
negative states. Scattering appears as a sort of resonance, (very far from the
resonance line) of the quantum jump (of energy 2mc?) between the positive
and the negative states.

§16. Radiative transitions from positive to negative states

We have seen in the preceding sections that a very great number of phe-
nomena find their natural explanation in Dirac’s theory of radiation. We will
now briefly discuss some serious difficulties of this theory. They are mainly
connected with difficulties in the theory of the electron.

It is well known that the most serious difficulty in Dirac’s relativistic
wave equation lies in the fact that it yields besides the normal positive
states also negative ones, which have no physical significance. This would do
no harm if no transition between positive and negative states were possible
(as are, e.g., transitions between states with symmetrical and antisymmetri-
cal wave function). But this is unfortunately not the case: Klein has shown
by a very simple example that electrons impinging against a very high poten-
tial barrier have a finite probability of going over in a negative state.

Dirac has tried with a very keen hypothesis to overcome these difficulties.
He postulates that there are in every portion of space an infinite number of
electrons which fill nearly completely in the sense of Pauli’s principle, all the
states of negative energy; a transition from a positive to a negative state there-
fore occurs very seldom since only a few negative states are unoccupied.
Dirac goes further with the hypothesis, as he postulates that the unoccupied,
negative places, the “holes”, are to be interpreted as protons; in fact it is
easily seen that a hole behaves like a positive charge with positive mass. The
quantum transition in which an electron jumps from a positive state into a
hole would therefore correspond to a hypothetic process of annihilation of an
electron and a proton, with radiation of the energy corresponding to their
masses.

Oppenheimer, Dirac and Tamm have calculated the probability of tran-
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sition from a positive to a negative state with radiation of the energy differ-
ence. From the standpoint that the negative states are equivalent to pro-
tons, their result gives the rate of annihilation of electrons and protons.

Without carrying out these calculations in any detail, we limit ourselves
to some qualitative remarks. Let us discuss the probability of radiative tran-
sition between a state (1) in which the momentum of the electron is ;=0 and
its energy Wi= +mc? to a state (2) where its energy is negative Wy = —mc?
and its momentum is p, =0. '

It is evident that the energy difference W, — Wy=2mc? can not be radiated
in a single quantum, since the momentum condition p; — p» = 2mc is not veri-
fied. It is however possible to obtain a finite probability of transition be-
tween the two states I, 2 with emission of two quanta having both energy
mc2/h and opposite direction of motion. This process is of course consistent
both with energy and momentum conservation.

The process will therefore happen in two steps. First step: a quantum of
energy mc? is emitted and the electron receives the recoil going over to a state
with momentum mc. The energy of the electron in this state is (114): W
= +22%mc2, This intermediate state does not satisfy also conservation of
(unperturbed) energy; as we have often seen in preceding instances, the
amplitude of probability for this state can not continuously increase with
time, but it can nevertheless be different from zero though having very small
oscillating values. From this intermediate state a direct transition to the
final state, with emission of a quantum of energy mc? and momentum op-
posite to the momentum of the first quantum is possible; since this last state
satisfies energy and momentum conservation, it is actually possible to show
that its amplitude of probability steadily increases giving a finite rate of tran-
sition from initial to final state.

Carrying out the calculations, the required probability of transition per
unit time results:

wet/mc?. (135)
If the electron in the negative state has not momentum zero, but has the
energy W' = —mc%a, (= 1) the probability of transition becomes:
Tet 1 a2+ 4o+ 1
m2c® ala + 1)[ (a? — 1)12

log [a + (a2 — 1)12] — o — 3]. (136)

If we assume that all the negative states are empty, formula (136) summed
over all negative states would give an infinite probability for the transition
from a positive to a negative state: electrons could not remain in a positive
state, not even for a very short time.

If we assume on the other hand the “hole” theory of protons, the theory of
the transitions becomes very uncertain, since the electron is in that case sur-
rounded by an infinite number of other (negative) electrons. The interaction
effects of these electrons are neglected in the theory, though it is evident that
they might have enormous effects. Dirac suggests that this interaction might
be responsible for the difference in mass of the electron and the proton. If we
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tentatively try to apply (136) to the process of annihilation of an electron and
a proton, putting for m some mean value between the masses of the electron
and the proton, the rate of annihilation comes out much too rapid; matter
would be destroyed in a very short time.

Part I1I. QuanTuM ELECTRODYNAMICS

§17. The electromagnetic field, whose interaction with matter we have
hitherto considered, is not an electromagnetic field of the most general type,
since a field of general type cannot be constructed by simply superposing
plane electromagnetic waves. It can be immediately seen that in a plane elec-
tromagnetic wave div E=0 and this equation holds also for any super-
position of waves. Instead in a general electromagnetic field we have div E
= +4mp, p being the density of electricity; this shows that no field, where
charges are present, can be represented as a superposition of electromagnetic
waves.

An electromagnetic field of the most general type is represented by help
of a scalar potential ¥ and a vector potential U by the well-known relations:

aU

1
E=—gradV — — t;H=rotU. (137)
¢

V and U are classically connected to the density of charge and the velocity
X by:
1 9%V 1 90U 4r

¢ o ™ ¢* ot c ? (138)

Further U and V are not completely independent of each other; they satisfy
the relation:

‘ 1 av
divU+——=0 (139)
¢ ot

which is closely connected to the equation of continuity for the electricity.

A general quantum theory of the electromagnetic field was constructed
by Heisenberg and Pauli by a method in which the values of the electro-
magnetic potentials in all the points of space are considered as variables.

Independently the writer proposed another method of quantization of
the electromagnetic field starting from a Fourier analysis of the potentials.
Though Heisenberg and Pauli’s method puts in evidence much more clearly
the properties of relativistic invariance and is in many respects more general,
we prefer to use in this article the method of the writer, which is more simple
and more analogous to the methods used in the theory of radiation.

We will consider only a region of space of finite volume and we suppose
that both scalar and vector potential at a given time can be represented by
Fourier series of the type:
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8w

1/2
V= C<E> >Q.cosT,

g (140)

\ 12
U= C(E> D t,sin T,

where Q, and #, are a scalar and a vector function respectively of the time
only. The factor ¢(8w/Q)'2 has been put for convenience of normalization as
in (12). T, is given by (4). It is convenient to develop V and U in series of
cos I'; and sin I, respectively, since in this case Eq. (139) takes a much sim-
pler form. It should finally be noticed that the number of characteristic fre-
quencies between v, and v, +dv, is to be taken equal to:

4w/ c®)Qw,2dv, (141)

i.e., to the half of (1), since in our case the two possibilities of polarization for
the transverse waves are taken in account by the fact that #, is a vector.

As variables representing the field at a given time we take @, and the
three components of the vector #,; it is convenient however to take these
components in directions related to the form of the phase factor sinT,; we
consider three mutually perpendicular unit vectors: a,, which points in the
direction of the wave, 4,1 and 4,, perpendicular to that direction. Let x,,
gs1, @s2 be the components of #, in the directions a,, 4,1, 452; we have then;

Us = UsXs + Aelqu + Aszqsz. (142)
As variables describing the field we can take:

Qs Xay Gs1, o2+ (143)

They depend only on the time.

It is very easy to deduce from (138) the differential equations that de-
termine the dependence of the variables (143) on the time. Multiply both
members of the first Eq. (138) by cos I'sdr and integrate over all the space.
We suppose that the potential V vanishes on the very distant surface limiting
our space {2, so that certain integrals over that surface can be omitted; we
obtain then by obvious transformations:

1 v
— 47 fp cosI'dr = fAV'cos T'idr — — | — cos I'ydr

c? a2
1 v
= fV‘A cos['sdr — — | — cos ['ydr.
c? a2
From (4) we obtain:
472y 2
AcosTy = — ——;~ cos T.

Cc
We have therefore:

d2
+ 4nwe? | pcosTydr = | — + 4n2p,2 V cos I'ydr. (144)
dt?
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Putting for V its expression (140) and remembering that the functions cos I,
are orthogonal and satisfy the relation

f cos I, cos I'ydr = 1Q6,,
we obtain:
fV cos I'ydr = ¢(27Q)1/2Q,.

From (144) we obtain therefore:

" 8m\1/2
Qs + 27%W,%Q, = ¢ (—Q—) fp cos I'ydr. (145)
This equation takes a much simpler form if we suppose that there are only
point charges e, e, €;, - - +, at the points X1, X,, X3, + - - . The integral in
(145) becomes then a sum over the point charges and we obtain:
. 8m\1/2
Qs + 27%,20, = c(—(—z-) D eicos Ty (146)

where the sum has to be extended over all the charges; I'y; is the value of the
phase T, at the place X; of the 7** charge

27y,

Ty = (as; Xt) +Bs. (147)

By the same method we find a similar equation for the vector #,:

8m\1/2 .
g + 2721’32'145 = (E) Ze.-X; sin I‘,;. (148)

1

Remembering (142), we find that the three components of this vector equa-
tion in the three directions «;, 41, Az are:

8r\1/2 .
Yo 4+ 20,2y, = (g) Sei(en, X9) sin Ty (149)

8r\1/2 .
o1 + 27%,%qa = (—5715) Zei(Aal, X:) sinT'y;

8\ 1/2 ‘ (150)
Joz + 27%,%q = (5) > ei(Aaz, X3) sin Ty

The Eqgs. (146), (149), (150) are equivalent to (138).
Take the derivative of (146) with respect to ¢ and add it to (149) multi-
plied by 27v,. Then we find:

& .
(E; + 41r2v.2> 2mvexs + Qs) = 0. (151)
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This equation is evidently satisfied if :

2mvixs + Qs = 0. (152)

It is immediately seen that this last equation is equivalent to (139). Eq. (152)
does not follow directly from the differential equations (146), (149); though it
results from (151) that if at a given time (e.g., £=0), (152) and its derivative
with respect to time

2mvexs + Qs = 0 (153)
are both satisfied, then they are satisfied for all time.

We must now write in Hamiltonian form the equations that describe the
motion of the particles and the variation of the electromagnetic field. For
this we simply write the Hamilton function and then verify that the canoni-
cal equations that can be derived by it actually represent the motion of the
particles and the Maxwell equations. The Hamilton function is the following:

87\ 1/2
H = —c¢ Y (vip) — 2mic®, + Eem(é-r) > Q. cosTy;

8m\ /2
+ Zeic <E> D (v, @oxs + Aaga + Asages) sin Ty,
+ Z[%(?Slz + Pa“lz + ws2 - Ps2) + 27"2"32(%312 + QS22 + st - Qsz)]. (154)

In this Hamilton function the variables are X;, and the spin coordinates, de-
scribing the motion of the particles; p; are the momenta (vectors) conjugated
to the coordinates X;; Qs, Xs, ¢s1, sz are the coordinates describing the field
and P, ws, P51, P2 are their conjugated momenta. vy, and §; represent opera-
tors analogous to Dirac’s operators ¥ and 8 of Eq. (105) operating on the spin
coordinate of the 7% particle. The structure of the Hamiltonian (154) is very
simple. Remembering (140), its first four terms can be written:

Z{eiVi -_ c<'yi, Pi - fiU,;) - miczsi} (155)
DEEAN c

which is simply the repetition of Dirac’s Hamilton function (105) for all the
particles. The last term of (154) represents the Hamiltonian function of the
electromagnetic field without interaction with the charges, and is analogous
to (11).

From this we see clearly that the Hamiltonian (154) correctly represents
the motion of the particles, since their coordinates are contained in (155)
which is equivalent to Dirac’s Hamilton function. We must show that also
the Maxwell equations, or the equivalent equations (146), (149), (150) can be
deduced from the Hamiltonian (154). For this we write the canonical equa-
tions derived from (154); we obtain:

oH

0 Py b= = 2 =m0, — e
s = =T Ly L= T T = sUs — €
aP, a0, 7 -

8
Q

1/2
> cosT'y;.  (156)
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If we eliminate P, from these equations, we obtain:

. 8m\ /2

Qs + 475,20, = D e (6) cos I'y;

which is identical with (146). Similarly the canonical equations for the pair
of conjugate variables x,,w;, are:

. dH . oH 8w\ /2 .
Xs = =Wy Wy = — —— = — 4y 2x,2 — ¢ ———) > ei(vi, @) sin Tys. (157)
Aws Oxs Q :
Elimination of w, yields:
87\ /2
5('3 + 47"21',2)(3 = — C(E> Eei('y;, as) sin F,,i. (158)

Now we observe that the velocity of the 7% particle in Dirac’s relativistic
theory is

X.’ = - CYq. (159)

(This results also from the Hamiltonian (154), since X;=0H/dp;). Eq. (158)
coincides therefore with (149). By the same method it can be proved that also
the Eq. (150) for the transverse components of the vector potential can be
derived from (154).

Eq. (152) which is equivalent to (139) can be written, remembering (156):

27vsxs — Ps = 0 (160)

and its derivative with respect to time is 2mv,x,— ., which can be written
by (156), (157):

¢ 8 1/2
= 200, + - (1) S eicosTy = 0. (161)

e \

i

We have proved by (151) that if (160), (161) are satisfied for =0, they
are satisfied also automatically for any value of time.

§18. In a classical interpretation we could therefore say that electrody-
namics and motion of the points can be deduced by integration of the canon-
ical equations corresponding to the Hamilton function (154); the initial val-
ues of the variables must satisfy the supplementary conditions (160), (161).

As we go over to the quantum mechanical interpretation, we must first
observe that it is in general impossible that two functions of the variables of
the system have simultaneously a well determined value, with the exception
of the case that the two functions commute; so at first sight it would seem
impossible to satisfy simultaneously (160) and (161). This is however, possi-
ble in this special case, since the first members of (160) and (161) commute
with each other as an immediate verification shows (remember that w, and
X, are conjugate and therefore w,x, —x.w, =%/2m%; and similarly P,Q,—Q,P,
=h/2wi, while all the other variables in (160) and (161) commute).
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To the classical integration of a system of canonical equations corresponds
in wave mechanics the integration of the Schridinger equation:

HY = — — — (162)

where H, given by (154) must be considered in the ordinary way as an opera-
tor acting on the function ¥ of the coordinates only:

Y = ‘l/(t: Xiy iy Gs1y €s2y Xsy Qs) (163)

o represent the spin coordinates.

If there were no condition limiting the initial values of the variables, then
¢ for t=0 could be chosen arbitrarily. But we have the conditions (160)
(161). We will show that these conditions determine the form of the de-
pendence of ¢ on x, and Q,. Indeed, w,, conjugate to x, must have according
to (161) the value:

¢ [8r\?
wy = 2mv,Qs — (-—-) Zei cos I'y;.
27!'1/3 Q i

It results from this that x, can be contained in ¢ only in a factor:

) 2w ¢ [8m\V2
e2mieXslh = exp | — x, \ 270, Qs — —) Ze,- cos I’y ) |. (164)
k 27”’3 Q i

By the same method we deduce from (160) that x, must be contained only in
a factor:
edmlivex,Qu/h

which is already contained in (164).
We see therefore that the form of ¥ must be:

271 8\ 1/2
¥ = exp [—T D xs (21FV3Q, - (’I> D e cos I‘sg)}x
5 : 2wv, \ Q R
¢(t; Xﬁ 03y Js1y q32) . (165)

If we substitute this expression for y in the Schrodinger Eq. (162) we ob-
tain a new differential equation for ¢. With some calculations it is found that
this equation can be put in the form:

)
Rp = — — — 166
¢ 2wt 9t (166)

which strongly resembles the form of a Schrodinger equation. The operator
R is the following:

8m\1/2 .
= —c¢ Z('Yi; Pi) - Zmiczai + Zeec (E) (’Y.', AuQu + AszlJaz) sin T'y;

2 . 1 2
+ 2 {3 + pe®) + 20,2(gn® + gua?) )} + c_ﬂ > ;-;( Ze.-cosI‘,l-) . (166)
] ™ 8 s i
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This operator R can be considered as a sort of Hamilton function acting on
¢. By this method therefore the coordinates Q, and x; representing the scalar
potential and one component of the vector potential are completely elimi-
nated both from the new amplitude of probability ¢ and from the new Hamil-
ton function R. Not considering the last term in R, which we shall discuss
later, the operator R is identical with the Hamilton function of Dirac’s the-
ory of radiation (117). (There are only some formal differences: in (117) only
one electron, instead of many particles is considered; in (166) the two polar-
ized components are considered separately with the indices s; and s;, whereas
in (117) there is only one index s).

We must find out the physical meaning of the last term in (166). This
term is:

c? 1 cos I'y; cos T'y;

2 2
——Z——(Zei cosI‘,;)=-c-—Ze,~e,-Z .
i TR i s 2

7!'9 8 ng Vs

The sum over s can be transformed into an integral. (Take the mean value of
cos I'y; cos T,; over all directions of propagation and phases for the s-com-
ponent; and then remember (141).) We find at last:

cosTycosTy; 72 1

o —— =

" PR 2¢% rij

r:; being the distance between the two points 7 and j. The last term of (166)
takes therefore the very simple form:
(Z12]
Py (167)
ii Tij
which is the ordinary classical expression for the electrostatic energy of our
system of charges.

At this point we meet a very serious difficulty, since the electrostatic
energy of point charges is infinite; every charge has an infinite electrostatic
selfenergy. We could try of course to avoid this difficulty, as it is very often
done in classical electrostatics by simply neglecting in the sum (167) all the
terms with ¢=j which represent the selfenergy of the charges. We shall see
however that even this very crude proceeding is not sufficient to avoid infinite
terms of non-electrostatic origin in the self-energy.

The problem which we meet now in quantum electrodynamics is identical
with that of radiation theory since our new Hamilton function R is the
Hamilton function of radiation theory plus the electrostatic energy. We have
hitherto considered in the radiation theory as unperturbed system, the system
obtained by neglecting the interaction between atom and radiation field. The
interaction term had then simply the effect of determining transitions be-
tween different states of the unperturbed system which have the same or
nearly the same unperturbed energy.

But we can ask whether there are quantum states for the complete prob-
lem. This problem is mathematically very difficult and can only be discussed
by the method of successive approximations. However the second approxi-
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mation still yields an infinite perturbation term in the energy levels and it
seems therefore probable, that for point electrons there are no quantum
states of the unperturbed problem. It could be noticed however that the
application of the perturbation method is for this problem extremely un-
certain, since the differences between the quantum states of the unperturbed
problem are very small in comparison with the perturbation.

To all these difficulties no satisfactory answer has yet been given. One
would be tempted to give the electron a finite radius; this would actually
avoid infinite terms, as in the classical theory of electromagnetic masses.
But this method is connected with serious difficulties for the relativistic in-
variance.

In conclusion we may therefore say that practically all the problems in
radiation theory which do not involve the structure of the electron have their
satisfactory explanation; while the problems connected with the internal
properties of the electron are still very far from their solution.
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